Stomatal Conductance, Canopy Temperature, and Leaf Area Index Estimation Using Remote Sensing and OBIA techniques

نویسندگان

  • S. Panda
  • D. M. Amatya
  • G. Hoogenboom
چکیده

Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted vegetation index (SAVI) developed with near infrared (NIR) and red bands. In this study, we present results of those analyses for two study sites with different plant species: 1) a managed loblolly pine (Pinus taeda L.) forest in coastal North Carolina for canopy temperature and gs and 2) a managed Blueberry (Vaccinium corymbosum) orchard within a natural forest in coastal Georgia (Z-Blu orchard) for the LAI. An Object Based Image Analysis (OBIA) technique was employed on the Z-Blu orchard to distinguish the forest species and establish their correlation with LAI using ground-truthing. Similarly, we used OBIA technique for the forest speciation on Turkey Creek watershed at Francis Marion National Forest site in coastal South Carolina with groundtruthing. Both classified images yielded 80% classification accuracy based on field verifications. Similarly, >90% correlation was obtained for the LAI map developed for Z-Blu orchard site plant speciation. However, for the NC pine site, the correlations were poor, with R values of 0.33 and 0.26 for gs v/s Landsat Middle Infrared (MIR) and gs v/s Landsat Thermal Infrared TIR models, respectively. This study on advanced image processing approach for forest speciation and ET parameters prediction/estimation can be a basis for similar other studies in the region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress.

Thermal imaging is a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. In this study, a new method for processing and analysing thermal images was developed. By using remote sensing software, the information from thermal and visible images was combined, the images were classified to identify leaf area and sunlit and ...

متن کامل

High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines

Precision irrigation management is based on the accuracy and feasibility of sensor data assessing the plant water status. Multispectral and thermal infrared images acquired from an unmanned aerial vehicle (UAV) were analyzed to evaluate the applicability of the data in the assessment of variants of subsurface irrigation configurations. The study was carried out in a Cabernet Sauvignon orchard l...

متن کامل

Multi-objective parameter estimation for simulating canopy transpiration in forested watersheds

A Jarvis based [Philos. Trans. R. Soc. London, Ser. B 273 (1976) 593] model of canopy stomatal conductance was evaluated in context of its application to simulating transpiration in a conifer forest covered watershed in the Central Sierra Nevada of California, USA. Parameters influencing stomatal conductance were assigned values using Monte Carlo sampling. Model calibration was conducted by eva...

متن کامل

3D lidar imaging for detecting and understanding plant responses and canopy structure.

Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant proper...

متن کامل

Establishing the relationship between stomatal conductance and microclimate through a model of stomatal conductance

through a model of stomatal conductance Jinzhi Wang Introduction I came to CGREC on May 7, 2008 to work under the direction of Dr. Xuejun Dong, eco-physiologist at the Center. His work involves the relationship between environmental factors (precipitation, temperature, and radiation) and soil respiration and plant physiology (leaf photosynthetic rates and leaf area index) of dominant species. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014